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Abstract. The main object of the present paper is to derive a unification (and generalization) of 
cemin interesting formulae from Barton (1983 Pmc. R Soc. A 388 445-56) and Bushell (1987 
Mnrh Proc. Combridge Phil. Soc. 101 1-5) associated with the complete elliptic integrals of the 
fvst and second kind. Relevant connections between the results presented here with those given 
w l i e r  by other workers on the subject are also painted out. Various families of generalized 
elliptic integnls, and indeed also definite integrals of such families with respect to their modulus. 
are known to arise (among other places) in the studies of crystallographic minimal surfaces (cf. 
e.g.. CviioviC and Klinowski (15’94 Proe. R. Soc. A 444 525-32)) and in the t h ~ ~  of scanerinn - .  . 
of aeeoustic or elecuomagnetic waves by means of an elliptic disk (cf Bjarkberg and Kristensson 
(1987 Con. J Php.  65 723-34)). 

1. Introduction 

In the usual notation, let K ( k )  and E ( k )  denote, respectively, the complete elliptic integrals 
of the first and second kind with modulus k (cf, e.g.. Byrd and Friedman 1971). Also, for 
convenience, let K := 

By evaluating the first term in a certain Born series in two different ways and comparing 
the resulting expressions, Barton (1983) found the integral formula: 

denote the complementarj moduhs instead of k‘. 

Subsequently, while addressing Barton’s problem of finding a direct proof of his formula 
(Ll), Bushell (1987) not only proved Barton’s formula (1.1) directly, but also derived a 
number of additional results analogous to (l.l), thereby extending several known integral 
formulae recorded, for example, by Byrd and Friedman (1971) (p 274) (see also Muller 1926, 
Kaplan 1950). Furthermore, Bushell (1987) (p 2, equation (2.2)) gave a generalization of 
Barton’s integral formula (1.1) in the form: 

where 

H ( k ,  y )  := (1 - ?)-;(I - k 2 t 2 ) y - i  dt ( y  > 0) I’  
t E-mail: HMSRl@UWM.UVIC.CA 
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so that, obviously, 

H(k,O) = K(k) and H(k, 1) = E(k). (1.4) 
Making use of (1.2). Bushell (1987) (section 4) proved a general theorem which he 

applied to deduce numerous further results including, for example, an interesting integral 
formula associated with the generalized hypergeometric function Fq (cf, e.g., Erdblyi et ul 
(1953, ch 4); see also Srivastava and Karlsson (1985) (p 19 et seq). We choose to recall 
this general integral formula of Bushell (1987) (p 5,  corollary) in the following corrected 
form: 

which holds true for suitably restricted values of the various parameters involved. 

recalled here as follows (cf Bushell (1987) p 3, equation (2.5)): 
Yet another integral formula analogous to (1.2), also proved by Bushell (1987), may be 

or, equivalently, 

and (cf Bushell (1987, p 3, equation (2.6))) 

it being understood, in each case, that p > -1 (and, by definition, y > 0). 

the familiar transformation (cf, e.g., Hardy (1923) (p 499, equation (6.1)): 
The integral formulae (1.7) and (1.8) would result from (1.6) upon iteratively applying 

(Re(8 + E - a - p - y )  > 0; Re(€ - y )  0). (1.9) 
Motivated by the usefulness of each of the above integral formulae, as demonstrated 

by (among others) Barton (1983) and Bushell (1987), we aim here at proving a general 
theorem which unifies as well as extends U N  of these integral formulae. We also indicate 
the relevant connections between the results presented here with those given earlier by other 
workers on the subject. 

It should be remarked in passing that an excellent source of simpler cases of integral 
formulae of the types considered here happens to be the recent work by Prudnikov et 
al (1990) in which most (if not all) of the classical results on the subject can be found. 
More importantly, various interesting families of generalized elliptic integrals, and indeed 
also definite integrals of such families with respect to their modulus, are known to arise 
naturally in a number of seemingly diverse physical contexts; for instance, in the studies 
of crystallographic minimal surfaces (cf, e.g., CvijoviC and Klinowski 1994) and in the 
themy of scattering of accoustic or electromagnetic waves by means of an elliptic disk (cf 
Bjorkberg and Kristensson 1987). 
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2. A general theorem 

First of all, we note that (since Ikl c 1) definition (1.3) would remain valid even when 
the parameter y is unrestricted, in general. Thus, when y E R (or, more generally, when 
y E C), it is easily seen from (1.3) that 

H ( k ,  -1) = - 
KZ 

since (Bushell 1987, p 2, equation (2.4)) 

(2.2) 2 H ( k ,  V )  = $~rzFi(J. 5 - Y ;  1; k ) (lkl < 1) 

or, equivalently, 

H ( k ,  y )  = Jn(l - k2)' z F i ( $ ,  Y + 4; 1; k2) (lkl < 1) (2.3) 

where we have used Euler's transformation (Erddlyi et a1 1953, p 64): 

(2.4) 

In fact, if we make use of the explicit representation (2.3), we can easily obtain the following 
(hitherto unnoticed) equivalent form of the integral formulae (1.6). (1.7) and (1.8): 

( p  > -1; y > -1) (2.5) 

which would also result from (for example) (1.6) when we apply transformation (1.9) 
with an obviously different choice for the parameters a, p ,  y .  6 and t involved in (1.6). 
Furthermore, Bushell's generalization (1.2) of several results including Barton's integral 
(1.1) can be proven directly by using the explicit representation (2.2) or (2.3) in conjunction 
with Gauss's summation theorem (Erddlyi et a1 1953, p 104): 

r(c)r(c - a - b)  
qc - a ) r ( c  - b)  ZFI ( U ,  b; C; 1) = ( R e ( c - a - b ) > O  c#O,-1, -2 ,... ). (2.6) 

Our unification (and generalization) of each of the aforementioned integral formulae 
(considered, for example, by Barton (1983), Bushell (1987), and others) is contained in the 
following theorem. 

Theorem. If 

and 
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then 

provided further that Re(p) > -1 and 

If I < 1 (or 151 = 1 and Re@ + 2 y )  > -1). 

Proof. Our proof of assertion (2.9) is based upon the following consequence of the explicit 
representation (2.2): 

(Re(p) > -1; Re@) > -2; 151 < 1 (or 151 = 1 and Re(p+Zy) > -1)) 
(2.10) 

which, for p = p, U = 0, and < = I ,  would reduce to Bushell's formula (1.2) in view 
of the Gauss summation theorem (2.6). As a matter of fact, by applying a known analytic 
continuation formula for the Gauss hypergeometric function (Erdfyi et a1 1953, p 108, 
equation 2.10(1)), it is easily seen from (2.10) (with U = 0) that 

x Z F l ( ? P +  1 1 , y  + ; p +  1; y +  ; P +  4; 1 - f * )  

(Re(p)> -I ;  Iarg(l-f2)1 cz; y + i p + + # 0 , & 1 , & 2  ,... ) (2.11) 

which, for p = p and 5' --f I ,  reduces immediately to Barton's formula (l.2), it being 
understood that 

p > -1 (and y 2 0). 

If we substitute for @(zk)  from (2.7) into the integrand in (2.9), and use term-by-term 
integration by means of the integral formula (2.10), we shall be led formally to the right- 
hand side of the assertion (2.9). The formal term-by-term integration can be justified by the 
theorem on dominated convergence under the various conditions stated above, since 

U, - a.ln ItStjU (n -+ 00: s E NO := IO, 1,2, .  , .)) (2.12) 

where U, denotes the coefficient of z" in the series on the right-hand side of (2.9). This 
0 evidently completes the proof of the theorem. 
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Remark I .  In the special case when U = 0, the Clausenian hypergeometric function 3Fz 
occurring on the right-hand side of (2.9) would reduce at once to the Gauss hypergeometric 
function 2Fl which, for { = 1 ,  can be summed by means of (2.6), and we thus obtain 

which holds true under the conditions that are derivable easily from those of the parent 
formula (2.9). A further special case of (2.13) when p = 0 and z = 1 happens to be the 
main theorem in Bushell's paper (1987, p 5, equation (4.1)). 

Remark 2. In terms of the generalized hypergeometric function p F q .  it is not difficult to 
deduce from our assertion (2.9) that 

which is valid for suitably restricted values of the various parameters and variables involved. 
In view of the Gauss summation theorem (2.6), a further special case of our integral formula 
(2.14) when 

o = O  z = < = 1  and p = $ u  

would lead us to Bushell's result (1.5). 

Remark 3. 
in an alternative form by the following simple change of variables: 

Each of the integral formulae (2.9), (2.10), (2.1 1) and (2.14) can be rewritten 

k k - + J 1 - k 2  and d k +  --dk. 
K 

For example, (2.9) thus becomes 

which holds true under the same hypotheses as those of the above theorem. This last formula 
(2.15) and its consequences, analogously to (2.10), (2.11) and (2.14), would generalize a 
number of integrals belonging to the family represented by (1.6), (1.7), (1.8) and (2.5). For 
example, (2.15) with 

p = l  u = p - - l  z = O  and { = 1  

immediately yields the integral formula (1.6). 
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3. Connections with other elliptic integrals 

Motivated by their importance or potential for applications in radiation physics, several 
recent works were devoted exclusively to the study of various interesting generalizations of 
the complete elliptic integrals K ( k )  and E @ ) .  For example, Epstein and Hubbell (1963) 
(and, subsequently, Weiss (1964)) studied the following family of elliptic integrals: 

Qj(k) := (1 -k2cOs8)-j-i di? (j E No; 0 < k < 1) (3.1) l= 
which were encountered in aLegendre polynomial expansion method when applied to certain 
problems involving computation of the radiation field off-axis from a uniform circular disk 
radiating according to an arbitrary distribution law and which were further extended by 
Kalla and Al-Saqabi (1991) to allow the parameter j to take on complex values. In fact, 
we have 

More interestingly, by setting 

it is easily seen from the definition (1.3) that 

which leads us to the following relationship between H ( k ,  y )  and Q,(k) (/A E e): 

(3.3) 

If, in Bushell’s definition (1.3), we set t = sin@, we immediately obtain 

n/z 
H ( k ,  y )  = 1 (1 - k2sinZ@)”-4 d@ (kz < 1; y > 0). (3.4) 

Comparing (3.4) with Das’s definition (1987, p 77, equation (7.1)): 

nlz 
H,(k) := 1 (1 -kZsin2@)”d@ (k‘ < 1; U arbitrary) (3.5) 

so that, obviously, 

H - ; ( k )  = K ( k )  and H i @ )  = E @ )  (k2 < 1) (3.6) 
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we get the relationship: 

H ( k ,  y )  = Hy-;(k) (kz c 1; y arbitrary). (3.7) 

Making use of the relationships (3.3) and (3.7). each of the integral formulae involving 
H ( k , y )  can be rewritten at once as an integral involving Q _ , ( k / m )  or Hy-;(k), 
Thus, for example, our assertions (2.9) and (2.15) yield the following alternative forms: 

(K := Vm) (3.8) 

and 

(e  := Vm) (3.9) 

respectively, each of which would hold true under the same hypotheses as those of the 
above theorem with, of course, y = -p. 

A special case of this last integral formula (3.9) when 

u 4 u - I  p = 2 h + l  z = O  and < = 1  

happens to be the main integral formula of Kalla and AI-Saqabi (1991, p 5 1 1, equation (18)). 
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